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* Change conjugation ?
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Quantum Theory : Value of the action

Matters
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Chern
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term "
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Chern
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Space of Gauge Fields + Gauge Transformations
.

In general

gaugegrout G
-

compact Lie
group .

§
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Acts on A :
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CAST G = Sok ) I U ( l )
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anything in G that has nonzero

winding number is called a

"

large gauge transformation "
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At 't ) periodic in tnttp
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constant.
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Under the large gaugetmns
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oihtikw = 1 for all we Z

iff KEZ
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In foot
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for G= UCI ) on some

Space times the action $ is

NOT
= gauge invariant !

But this is at forth quantum
theory because in the path
integral only expfs ) enters

And far
quantized level kez

E£ is gauge invariant
.



Anomalies = In general in field

theory - space F of
"

fields"

g-doggie

: *

¥¥
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bet
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"
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Suppose G=acts on F

preserves S[ fat ; took ]
.

Suppose it formally preserves
the measure valffdyn)

Then we EXPECT
mu

Z[¢bck ] to be G- inut
.

z [ g. 9
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.

Path integrals are formal things
and need to be defined

e.g. Zq nd S - function

It can happen that after

defining Z carefully



( regularization ,
renormalization )

it turns out that well . defined

£1 click ] is NOT G- int
.
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"

⇒ Potential anomaly
-

* Sometimes the lack of invce

can be removed by physically
unimportant redefinitions

.

" local counter terms
' '

etc
.

*

Sometimes

the lack of invce

CANNOT be removed in this
way .

"

True anomaly
"
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explikfa ) a-

descends to a function
on A/Go

for
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K
.
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gauge group isG⇒R

this term is not anomalous
.
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gauge group
is G=U Cl )

it does not descend to a function

on A/G unless k€2

if K¢z we say
this physical

quantity is an=md= .



Look at these ideas in the context

of our gauged QM
.

There won't be
any interesting

anomalies for Go
.

For simplicity use Go to put
AT't ) = Mp constant
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Actually , by changing the problem

again,
we can make sense of

a 42 -

integer C. S
.

term
.

03=11 essential point
already clear by

looking at leading terms in p→alimit
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So we can have symmetry under

s but not 5 or under

5 but not s depending
on choke

of K
.

In general in the theory of
anomalies if thereis one

definition of Z that is int
.

under Ll
,CG,

and

another definition so that

Z int under Ll< CG

but No def
.
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,
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a
"
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"

.
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Making Sense of K$2
even when G - UCI )

"
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exp ( ikfga

)=e×p(it⇒
-

F=dA is
gauge inut

tk { F makes sense as

a

gauge int real number

for
any
t

o⇐ot*k"Fiennes:)



Fractional C- s
.

levels appear
• topological insulators

• fractional quantum Hall effect

( "

spin Chern . Simons theory
"

)
•

susy + sugratstoingtheory
S.

Heisenberg Extensions
- me

I → A  → E → G→ I

Class of VextensionsA  = Abelian

Central G= Abelian

but £ is - in a sense -

"

maximally nonabelian "

We 've met Heis ( Zn×Zn )
QM

. of particle on disc . appxtto a circle
.



Preliminary : Some useful identities

for manipulating exponentials of

Operators.

A e Milk )

or a suitable
operator on Ll

.

Cwaat all
powers A "to exist )

a

An
exp (A) = 1-Em

- • n !

• expfna ) exp (pa ) =exp#pA )
• da ( et A ) =AetA=etAA

• EA @B e- A
= @@ABEA )
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Ad (A) linear tmn on veatwsqace
of matrices

.

Ada : B → [A,B]

( ADCA ) )m : B → [ A ,[ A
,

. . - [ AID - - if

=times nested
.

Claire
|eABEA=e×pAdHD@=

PIBH ) = eta Beta

BE ) = B BC 1 ) = what we

Want
.
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* Suppose now AH )

matrix / operator - valued function of t

In general :

dazed 't

'¥nil ,eA 't '

# EAH Ect ,
Note that

,
in general, AHI

and It Ct ) don't commute
.

Next time : We 'll give a useful
formula for ddee Act )

Also
@AeB± EATB

When A and B do not commute
.

we'll give a formula for eAeB=eC
C = function of A and B

.



QM
.

of a particle moving on a

general Riemannian manifold €GgD
¥lyo#I

'

' free Keay .

$ = ftsgxxipxnti :X )

tofldxct, ] E
$

=Z[gµ . ]
Map ( s '→z )

In
general

the S.c. appxt .
will

NOI be exact !

S.C
. Appxt. 8$ = 0

2⇒ closed geodesics

⇒§;¥9 FLEEexes



For special case

I=H/p
offer = hyperbolic metric

.

S.C. appxt . ⇒ Selbergtoace formula

Surprising. This is exact ?

Related : ( not
rigorous ) Gutzwiller

trace formula
-

generalizes the idea
to

classically chaotic systems.


